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Abstract.  Frequently in epidemiologic cohort studies the primary goal is to estimate the effect

of exposures, , on a time-to-event outcome, , while adjusting for other covariates, .  WhenZ X N3 3 3

the cost of measuring  is disproportionate to the cost of , it may be inefficient or infeasible toZ N3 3

ascertain  on everyone. Cost may reflect financial cost, logistical cost, or health risks attendantZ3

upon obtaining V  measurements from individuals. These considerations have given rise to two-3

stage sampling strategies: in stage-one  is observed on all members of a cohort;  in stage-two aN3

subgroup is selected for  measurement.  For censored failure time data the most common two-Z3

stage designs are the case-cohort (CCH) and nested case-control designs (NCC).  These focus on

estimating the relative risk parameters in a Cox proportional hazards model.  Rather than relative

risk, our emphasis is on survival, or absolute risk.  Though both CCH and NCC designs provide

estimators of the cumulative hazards, and hence survivals, those estimators are biased if any

cases are missing the  measurements.  In this paper we present a class of nonparametric andZ3

semiparametric cumulative hazard estimators that are unbiased regardless of stage-two case-

sampling fraction.  characterize the mathematical form of the efficient estimators; expressWe 

the determinants of efficiency in terms of  relative risks, survivals, and exposure prevalences;

and describe how familiar subject matter considerations have practical implications for decisions

regarding study design and analysis.  We motivate this work with a data analysis of a two-stage

study on  infection and gastric cardia cancer.  Using simulations we demonstrate thatH. pylori

differences in the efficiency of estimators accord with theory and can be substantial.  We have

written R and S-plus code that implements an approach to estimation that is conceptually simple

and has desirable efficiency properties.
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1.    Introduction

  In epidemiologic cohort studies new exposures, which we call , frequently become ofZ3

interest after endpoints have already been recorded at follow-up time .  Two  sampling7 -stage

designs are a common strategy for estimating the association of  with outcome in such cohorts.Z3

We focus on studies where the outcome is time to some event of interest, .  In the first stage ofX3

these studies, one observes a (possibly empty) set of covariates, , and an outcome E Ö\ ß ×3 3 3?

for each of the  individuals.  As usual, ,  is a censoring time,8 \ œ 738 ÐX ßG Ñ G3 3 3 3

?3 3 3œ MÐ\ œ X Ñ MÐ † Ñ, and is the indicator function.  Throughout this paper we assume

censoring is independent and non-informative (see for example, Andersen, Borgan  Gill, and

Keiding, 1991). Consistent with epidemiologic parlance we call those with cases, and?3 œ "

those with controls.   the combined set of outcome and covariate data?3 œ !ß [3 denotes

observed at the end of stage 1 (time ).7

[ œ Ö\ ß ß E × Ð"Ñ3 3 3 3?  

In the second stage of the study, using selection probabilities, ( , that depend only on  a19 3 3[ Ñ [ ß

sub-sample of individuals is chosen for measurement of .  The motivation for sub-sampling isZ3

that , which we subsequently refer to as the , are in some sense, expensive, orZ3 exposures

difficult, to measure. Since the occurrence of cases is rare compared to that of controls, and case

counts are the main determinants of the variance of the estimators, sampling rates are generally

higher for cases than for controls. We define  if  is known for individual ; V œ " Z 3 V œ !3 3 3

otherwise.  To control confounding, an investigator generally estimates the effect of  Z3

conditional on a set of , , . We call variables in  that are not inadjusting covariates N N © E E3 3 3 3

N3 3
+?B, , and denote them .auxiliary variables A

 When the outcome is time-to-event, the most common two-stage designs are the case-

cohort (Prentice, 1986; Self and Prentice, 1988) and nested case-control designs ( Lidell,

McDonald, Thomas, 1977;  . The primary focus of theseBorgan, Goldstein, and Langholz, 1995)

designs has been estimating relative risks ( ) associated with covariates whenrr ^ œ ÖZ ß N ×ß3 3 3

hazards are specified by a Cox proportional hazards model (CPH) such as (4).  We recently

reviewed these approaches and showed that the estimators and their variances can be written as a
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single set of  estimating equations (Mark and Katki, 2001). In contrast, rather than estimating

" 79ß WÐ lDÑ D − the focus in this paper is on the estimation of the conditional survivals, , where

m (the support of .^ Ñ3

 The motivation for this work arises from two-stage studies we have conducted on a

cohort in  China with epidemic rates of gastric cardia stomach cancer (GCC).  This cohort was

selected from a well defined geographic population, and estimates of survival, or absolute risk,

are of  public health importance (Mark,  To illustrate the issues and Qiao, Dawsey, et al., 2000).

demonstrate an application of our procedures, we analyze data from our study on the association

of  H.Pylori (Hp) infection with incident GCC (  et al., 2000).Limburg PJ, Wang CQ, Mark  SD,

In that study,Z Z "3 3 was the measurement of serum antibodies to Hp:  =  if a subject had

antibodies to Hp  contained such information as age, sex, height, and weight.  Since age was. E3

the only significant risk factor in , in the analysis we present,  is an indicator variable, withE N3 3

N œ "3 if a subject's age is greater than the median cohort age. We document the performance of

estimators using simulations based on the structure of  our current study on Hp and GCC which

includes endpoints accrued over an additional ten years of follow-up.

 Though our inferential focus is survival, the mathematical results we present are on the

cumulative hazard scale, ; ,A 7Ð DÑ

 ; |       A 7 -Ð DÑ œ Ð? DÑ .? Ð#Ñ(
!

7

We  obtain estimators of the conditional survival through the identity

WÐ lDÑ œ /B:  Ð Ð DÑ Ñ Ð$Ñ7 A 7 ; 

 In 1994 Robins, Rotnitsky and Zhao (1994) (henceforth called RRZ), described the class

of all two-stage estimators in terms of weighted estimating equations, and derived the

mathematical form of the efficient member of the class. They focused on conditional mean

models.  Applying  their results to time-to-event data, we describe the class of nonparametric and

semiparametric cumulative hazard estimators.  In nonparametric estimation no assumptions are

made regarding the relationship between hazards at different levels of  For the semiparametricDÞ

model we assume the hazards are related by the Cox proportional hazards  (CPH) model
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 - - " "Ð?l^ Ñ œ Ð?Ñ/B: Ð Z  N Ñà Ð%Ñ3 9 3
X X

#1 3

where  and   are conformable  vectors of covariates and^ œ ÖZ ß N × œ Ö ß × : ‚ "3 9
X X X X X X
3 3 " #" " "

parameters.  For simplicity, we assume that the  are time invariant, and that, as expressed in^3

( ), there is no  by interaction. We refer to  as the baseline hazard.  Since our interest is% Z N Ð?Ñ-9

in contrasting survivals of  groups of individuals, in the body of the paper we assume  has^3

finite support of dimension k .  In the Hp   . In appendix D we give results on‡ ‡ data 5 œ %

estimation in a completely general support space.

 There are several practical advantages to the RRZ formulation.  Both the case-cohort

(CCH), and nested case-control (NCC) designs specify that cases be sampled with probability

one. When  is not measured on all cases, the cumulative hazard estimators given in thoseZ3

proposals are biased (Mark and Katki, 2001).  Epidemiology studies commonly require exposure

measurements which are expensive and consume limited specimens. Consequently, designs with

fractional cases-sampling have become increasingly frequent and attractive (Mark and Katki,

2001).  In the Hp study, due to uncertainties with regard to the direction of the association and

the prevalence of  Hp infection, as well as a reluctance to use up the small quantities of available

serum, we sampled approximately 25% of available GCC cases.  The estimating equations we

describe are weighted by the inverse of the sampling probability and accommodate any non-zero

sampling rate.  Even when the intent of an investigator is to measure V on all the cases, vagaries

beyond investigator control seldom permit complete ascertainment (Mark et al, 2000; Mark and

Katki, 2001).  We describe the additional assumptions required for estimation when there is

unplanned missingness in section 6.

  Another feature distinguishing RRZ from CCH and NCC estimators, is that in RRZ

estimators, individuals with unobserved V  contribute to estimation.  In this paper we emphasis3

that the distinction between estimators within the RRZ class, and hence the differences in

efficiency, are entirely due to variation in the extent to which information from subjects with

R   is utilized3 œ ! .  We derive expressions for the efficient nonparametric, and the restricted-

class efficient (defined in section 4) semiparametric estimators, in terms of aspects of the
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probability distribution of the data familiar to epidemiologists.  This formulation has clear

implications for the design and analysis of two-stage studies.

 Finally, in this paper we emphasize a particular approach to estimation, which we call  -1s

estimation.  Formulation in terms of  -estimation provides a geometric representation, as well1s

as a practical means of implementing, efficiency consideration.  R and S-plus code that

implements these -estimators is available (Mark, 2003, Appendix F).1s

2.   Full-Data Estimators and Influence Functions

 We refer to studies in which  is observed for all  individuals as Z 83 full data studies, and

use  to denote the fully L œ Ö[ ßZ ×3 3 3 observed data.  In a sense made specific in section 4, RRZ

proved that that all two-stage estimators and their corresponding influence functions can be

expressed as  of their full data counterparts.  In this section weweighted versions with offset

describe the full data estimators and influence functions for the nonparametric cumulative

hazard, and for the semiparametric estimators of  and the baseline cumulative hazard (5) ."9

  A 7 " -9 9 9
!

Ð ß Ñ œ Ð?Ñ .? Ð&Ñ( 7

For the semiparametric model, the cumulative hazard at any covariate level  isD

A 7 " A 7 " "( , and is estimated in the obvious fashion. Its distribution isà DÑ œ Ð ß Ñ/B: D9 9 9
X
9

derived by the delta method, such as in Anderson et al. (1991).  To indicate the  1 vector of5 ‚‡

cumulative hazards at  , we drop  from the arguments and write ( , or ( , .   In  section7 A 7 A 7 "D Ñ Ñ9

4 we provide corresponding results for two-stage estimators.  We explicitly give results only in

terms of estimation at the end of follow-up time ;  estimates at any other time , , are7 7> ! Ÿ > Ÿ

obtained by substituting   for  in the limit of integration of the estimators.> 7

 In full data studies the Nelson -Aalen estimator,  , , is the efficient nonparametricA 7sÐ DÑ

estimator of 2  (Anderson et al., 1991).  The partial likelihood estimator,  , and the BreslowÐ Ñ s"

estimator,  are the semiparametric efficient estimators of   (4)  and the baselineA "s Ð ß Ñs9 7 "9

cumulative hazard (5) ( Anderson et al, 1991).  Using standard counting process notation, we

denote the event counting process  iff   and ), and the at riskR R Ð?Ñ œ " ß X Ÿ G3Ð?Ñ, ( 3 3 3X ?3 Ÿ

process, ( iff   For individual the hazard of  ] Ð?Ñß ] Ð?Ñ œ "ß ÐG • X Ñ 3 X3 3 3 3 3Ÿ ? ).  conditional
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on  is |  .  We assume the |  are non-negative, and the ;^ Ð? ^ Ñ œ ] Ð?Ñ ‚ Ð?l^ Ñ Ð? DÑ Ð3 3 3 3 3- - - A 7

DÑ are finite.  In the context of nonparametric estimation the above should be regarded as a

multivariate counting process of dimension .  That is, we estimate the within-stratum5 5‡ ‡

cumulative hazards, , where, for instance, the    row of is A 72 3
wÐ Ñ 2 >2 R Ð?Ñ R Ð?Ñ œ "ß32 iff

MÐ^ œ 2 Ñ ß X Ÿ G ] ?3 3 3 3
4œ" 3œ"

8 8

,  and .   ( );  X ?3 Ÿ As is standard we define, W Ð?Ñ œ W Ð?ß Ñ œs! !! !"

] ? /B: Ð ] ? ^ /B: Ð3 3 3
3œ"

8

( )   ( )   " " "s s s^ Ñ W Ð?ß Ñ œ ^ Ñ3 3
";  and  .  Under the usual regularity conditions!

(Anderson et al. ,1991),   for all three processes.8 W Ð?ß † Ñ I W Ð?ß † ÑÓ œ = Ð?ß † Ñ
637:" 4 4 4Ò 

Q Ð? Ñ Q Ð?Ñ œ R Ð?Ñ  Ð?Ñ3 3 3 3denotes the counting process martingale, .A

 The full data Nelson-Aalen estimator of (  is (Anderson)5 ‚ " Ñ‡ A 7

A 7sÐ Ñ œ W Ð?Ñ .R Ð?Ñ Ð'Ñ"
3œ"

8

!

! "
3( 7

Anderson et al. (1991) give the influence function expansion of  asA 7s Ð Ñ

8 Ð Ñ  Ð Ñ œ 8 H  9 Ð"Ñ Ð(Ñs" "
# #Š ‹ "A 7 A 7  J

3œ"

8

3 :
1 

H œ = Ð?Ñ .Q Ð?Ñ Ð)ÑJ !
3

!

"
3

1 (  ‘7

Newey (1990) showed that all nonparametric estimators have identical influence functions, and

hence, are asymptotically equivalent.  Thus (8  is the influence function for any nonparametricÑ

estimator of A 7Ð ÑÞ

 The class of full data estimators for the  in CPH model (4) ( RRZ, 1994) are the 's" "9
sÐ2Ñ

that solve

  "(
3œ"

8

!
3 3 3

" !
7 š ›2Ð^ ß\ Ñ  W Ð=ß 2Ñ W Ð=ß Ñ .R Ð=Ñ œ ! Ð*Ñ" "ß "

The choice of the function  determines the efficiency of the estimator.  For full data,2Ð^ ß\ Ñ3 3

the semiparametric efficiency bound is achieved by the partial likelihood estimator with

2Ð^ ß\ Ñ3 3 =  The full data influence function for the partial likelihood estimator is ^ Þ H3
J#
3

H œ ^  /Ð?ß Ñ .Q Ð?Ñ Ð"!ÑJ "
3

!
3 9 3

2 3 ( š ›7

"   
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where , and   /Ð?ß Ñ œ = Ð?ß Ñ= Ð?ß Ñ ^  /Ð?ß Ñ .Q Ð?Ñ" " " "9 9 9 3 9 3
" ! "

! !3 I=   Š š › ‹ Š' '7 7

š › ‹^  /Ð?ß Ñ .Q Ð?Ñ s
3 9 3

X

" "  the usual partial likelihood information.  As in (7), the estimator ,

can be expressed as the sum of its iid influence functions.

 The Breslow estimator of the baseline cumulative hazard, A 7 "9Ð ß Ñ, is given by

 A " "s Ð ß Ñ œ W Ð?ß Ñ .R Ð?Ñ Ð""Ñs s
9

3œ"

8

!

! "
37 "(  ‘7

 To obtain the influence function for (11)  we write

A 7 " A 7 " A 7 " A 7 " A 7 " A 7 "s s s sÐ Ñ  Ð Ñ œ Ð Ñ  Ð Ñ Ð Ñ  Ðs s
9 9 9 9 9 9 9 9 9 9, , ,  ,  + , , ) š › š › Ð"#Ñ

Using  a Taylor series expansion of   around  as in Theorem VII 2.3 Anderson et al. (1991)," "s
9

we express the first term in the right hand side of (12)  as

Ð  Ñ /Ð?ß Ñ Ð?Ñ .?  9:Ð"Ñs" " " -9 9 9
!

X ( 7

 

Then replacing estimators in (12) with their influence functions, we have

8 Ð Ñ  Ð Ñ œ 8 H  9 Ð"Ñs s" "
# #š › " , ,  A " A "9 9 9 :

 J$
37 7 Ð"$Ñ

H œ = Ð?ß Ñ .Q Ð?Ñ  H /Ð?ß Ñ .J$ ! J
3 3

! !
9 3 9

"( ( ‘7

" "2X
9 9

7

A "Ð?ß Ñ

 We refer to the H , − Ö"ß #ß $×3
J,, , as the .  Like all influencefull data influence function=

functions, they are iid and have expectation 0.  Hence the asymptotic variance of each estimator

is  .I H H’ “J, J,
3 3

X

 Though we explicitly present results for a non-stratified  CPH model, the results of a

stratified model, with strata generated from a discretization of , can be described using theE3

multivariate counting process.

3.  Stage-Two Sampling Restrictions

 For most of the paper we assume that conditional on  selection of individuals for[3ß

measurement of   is independent with known, non-zero, probabilities,  that do noZ Ð[ Ñ3 31
9

depend on  That isZ Þ3

  ,   1Ð[ Ñ œ T<Ð V œ "l[ Z Ñ œ T<Ð V œ "l[ Ð"%Ñ3 3 3 3 3 3‰



-7-

In the usual parlance of missing data, restriction (14) is consistent with being missing atZ3

random (MAR) (Rubin, 1976).  As we frequently do for random variables, we drop the explicit

argument of a function, and use the subscript  to indicate that it is a random variable.  Thus we3

write , where  .   At the end of section 6 we extend the results to dependent1 1 13ß9 39 9 3´ Ð[ Ñ

sampling, and to missingness that is not entirely under investigator control.

 Without loss of generality we specify the known sampling probabilities using  the logistic

model

6913> Ð[ Ñ œ 2Ð[ Ñ Ð"&Ñ1 <9 3 3
X
9   

Here  and are known, conformable, finite dimensional vectors of parameters and<9 32Ð[ Ñ

random variables, respectively. Clearly neither the parameterization nor the dimension of

equation (15) are unique.  For instance, if  contains only information on sex, and stage-twoE3

sampling depends only on case status, then two correctly specified models for (15) would be

   6913> Ð[ Ñ œ MÐ œ "Ñ  MÐ œ !Ñ Ð"'Ñ1 < ? < ?9 3 9 3 9# 31

6913> Ð[ Ñ œ MÐ œ "Ñ  MÐ œ !Ñ  Ð"(Ñ1 < ? < ?9 3 9 3 9# 31  

< <9$ 9%     MÐ7+6/Ñ  MÐ0/7+6/Ñ

Here and .< ? < ? < <9" 3 3 9# 3 3 9$ 9%œ 6913> T <ÐV œ "l œ "Ñ à œ 6913> T <ÐV œ "l œ !Ñß œ œ !

 We define  to be the smallest set of linearly independent vectors such that (15) is true[3
V

where size refers to the dimension of the column space spanned by the .  In our example,2Ð[ Ñ3

the dimension of   is two.  Correctly specified models are those with covariates  such that[ [3
V 6

[   [ Ð")Ñ3 3
6 V  .

The inequality relation denotes that the span of  includes that of  .  We consider models[ [3
6 V

3

with equivalent spans to be identical, and restrict ourselves to covariate spaces where the  are[3
6

linearly independent.

 We denote the scores from any logistic model with covariates as ,[ W6 6
3 3

W ÐV  Ñ[ Ð"*Ñ3 3
6 6

3 39 = 1

4.0  Two-Stage Estimators and Influence Functions



-8-

  The two-stage risk set estimators, , are inverse probability weighted versions of~
W Ð?ß † Ñ

4

the full data estimators.  For instance, Like their  full data~
W Ð?Ñ œ V

!

2 39
"

3!
4œ"

8

3ß2 ( ) . 1 ] ?

counterparts, their averages converge in probability to  (Pugh, 1993; RRZ, 1994 ).= Ð?ß † Ñ4

  RRZ prove that two-stage estimators and their influence functions, can be expressed as

weighted versions of the full data quantities with an "offset".  Applying these results to

nonparametric estimation establishes that all two-stage estimators of (  are asymptoticallyA 7Ñ

equivalent to a member in the class of estimators, , , defined as~
A 7Ð 1 Ñ"

A 7 1 1 1
~ ~   Ð ß 1 Ñ œ W Ð?Ñ .R Ð?Ñ  ÐV  Ñ Ð#!Ñ" 3 3 39

!
3ß9 39
" "! "" (

3œ"

8

  Š ‹7

V3  1 Ð[ Ñ1 3 Ÿ
Here vector of1 Ð[ Ñ 5 [ Þ1 3 3 is any  non-stochastic functions of  specified by the investigator‡ ‚ "

The corresponding influence functions are

H Ð1 Ñ œ V H  ÐV  Ñ Ð#"Ñ" " J" "
3 3 3 39" 3 3 39 1 1 1 1 Ð[ Ñ1 3

Note that here, unlike the full data case where we have a single estimating equation (6) and

influence function (8), there are a class of estimators and influence functions characterized by

the "offset" .1 139
"

3 39ÐV  Ñ 1 Ð[ Ñ1 3

 he class of two-stage semiparametric estimators of  are characterized by an  T "9 2Ð † Ñ

function as well as the  offset term, (RRZ,1994)   E  : 1 Ð[ Ñ‚ " ÐV  Ñ Þ1 139
"

3 39 2 3 fficiency in

estimation depends on the choice of both the   and . The optimal function2Ð Ñ 1 Ð† † Ñ#  functions

2Ð Ñ†  is a non-closed form integral equation that is a function of  infinite dimensional parts of the

survival and covariate distributions .  For reasons of practicality, we therefore (RRZ, 1994)

follow a general recommendation of RRZ and restrict our estimators to the subclass that use the

efficient full data  function, Z .  This subclass includes the CCH and NCC2Ð † Ñ 2Ð^ ß\ Ñ œ3 3 3

estimators.  Hence, we consider estimators   that solve~
"Ð1 Ñ2

! '
3œ"

8

! 3 3
" !Š š › ‹7

V3 1 " " 1 1" " "
3 39 3 39‚ ÐV  Ñ œ ! Ð##Ñ^  W Ð=ß Ñ W Ð=ß Ñ .R Ð=Ñ 

~ ~
1 Ð[ Ñ2 3

Due to this restriction, we refer to efficiency results for estimators of , and , ) as" A "9 9 9Ð=

restricted-class efficient estimators (RC-efficient).  The influence functions for   are~
"Ð1 Ñ#

  H Ð1 Ñ œ V H Ð Ñ  ÐV  Ñ1 Ð[ Ñ Ð#$Ñ# " J# "
3 39 3 39# 3 3 39 31 " 1 1 2
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 The procedure for estimating the baseline cumulative hazard ( 5) is analogous to the full

data case.  First estimate  any scalar function of ,"
~ , then, Ð1 Ñ2 with 1 Ð[ Ñ [3‡ 3 3

  , ;~ ~
A 7 1 19 $ 3 3 39 $ 339

"Ð ß 1 Ñ œ V ÐV  Ñ1 Ð[ Ñ Ð#%Ñ" "
~ ~
Ð1 Ñ W Ð?ß Ð1 ÑÑ .R Ð?Ñ # 3

3œ"

8

!

! "
‡ ‡! '  ‘š ›7

2

Using an identical Taylor series expansion as above, the influence functions for (24) are

  =         H Ð1 Ñ V H  ÐV  Ñ1 Ð[ Ñà 1 œ 1  1 /Ð?ß Ñ Ð?ß Ñ Ð#&Ñ$ " J "
3 $ 3 3 39 $ 3 3ß$ 3ß# 9 9 939 39 3ß$3 !1 1 1 " A "3

‡ ' 7
.

 As for the full data case, the asymptotic variances of the estimators are  .I H H’ “, ,
3 3

X

 Let   denote any non or semiparametric estimator of (2).  We form estimates~
A 7Ð ß † Ñ

WÐ † l@ 4Ñ WÐ l@ß 4Ñ Ð ß † Ñ Ð Ñ Ð$Ñ
~ , ,  of  by substituting  for  in .   We provide consistent~
7 7 A 7 A 7

estimators of   , and the variances of the , ,  , are in appendix A.~
I H H WÐ † l@ 4Ñ’ “J, J,

3 3
X

7

 5.   The Efficient g  for Estimators of  and , 9Ð † Ñ Ð=ÑA "

 We define simple true-  estimators (STP) as those in which 1 1 œ !,  in 20,22,24 , and

write the STP influence functions as, .  We can then express the  asH Ð Ñ ´ V H H Ð1 Ñ, " J, ,
3 3 39 3 ,391 1

H Ð1 Ñ œ H Ð Ñ  ÐV  Ñ1 Ð#'Ñ3 3 39
, , "

, 9 3 39 3ß,1 1 1

From  20,22,and 24, it is apparent that differences between estimators in each class are entirely

due to differences in the 1,. Thus, finding the minimum variance estimator is equivalent to

finding the  that minimizes     We call such a , the efficient, or for the1 IÒH Ð1 ÑH Ð1 ÑÓ Þ, , , ,3 3
, ,X  1

semiparametric models  RC-efficient, , and denote it by .  For , direct1 1 , − Ö"ß #×,
/00
,

application of proposition 2.3 of RRZ  establishes that   .  For estimators of1 œ IÒ H l[ Ó/00
3ß, 3

J,
3

A "9 #Ð=ß Ñ 1 1, which are a function of and , we use RRZ 2.3 and show (Appendix B) that the3‡

minimum variance is obtained with  , and that  .1 œ !ß 1 œ IÒ H l[ Ó 1 œ H [2 3 3‡ 3
J, J$

3
/00

3I’ ¹ “
 RRZ prove that an equivalent representation of the influence functions in (26)  is

H Ð[ Ñ œ H Ð Ñ  ; W Ð#(Ñ3 3
, 6 , ,

9 3
6

1
 

Here  is any conformable matrix of constants, and are scores (19) from correctly specified; W, 6
3

logistic models (15).  In appendix C we use (27) to provide an alternative derivation  for the

efficiency results of RRZ 2.3.  The proof relies on the following two characteristics of population

least squares regression that are fundamental to understanding the  -estimating procedures, their1s
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efficiency properties, and their method of implementation: 1) for any given set of scores, ,  theW3
6

variance of   is minimized when  is the projection operator, , of   on .H Ð[ Ñ ; T H Ð Ñ W3 3 3
, 6 , ,6 , 6

3ß91

T œ IÒH Ð ÑW IÒW W Ð#)Ñ,6 , 6 6 6
3 3 39

X X "
1 ‘ ‘  

2) Since  is the residual from a projection the variance is non-decreasing in theH Ð Ñ  T W ß, ,6 6
3 33ß91

dimension of .  In appendix C we show that the minimum variance is reached when[3
6

T ÐV  ÑI H l[ Ð#*Ñ,6 6
3W œ 1 139 3

" J,
3 39 3’ “   

and that (29) (Appendix C, Result 2) is true for logistic model (30)

6913> Ð[ Ñ œ 2Ð[ Ñ [ à [ œ I H [ Ð$!Ñ1 < < 19 3 3 3
X w " J,
" # 39 33ß, 3ß,

/00 /00 +    ’ ¹ “
6.   -Estimators1s

 We define -estimators to be the solution to estimating equations 20,22, and 24 when1s

1 œ !3ß, 3ß9 and the known sampling probabilities, , are replaced with predicted sampling1

probabilities, .  Specifically, the  are formed by replacing  in (15)  with1 1 <s sÐ[ Ñ Ð[ Ñ3 3 9
6 6

maximum likelihood estimates, .   RRZ (proposition 6.1) show that -estimators are consistent,< 1s s

asymptotically normal, with influence function

H Ð Ð[ Ñ Ñ H Ð Ñ  T W Ð$"Ñs, 6 , ,6 6
3 3 33ß91 1 =   

It immediately follows that the variance of any -estimator is less than or equal to the1sÐ[ Ñ6

variance of the STP estimator; and, for , the variance of the (  estimator is less[  [ [ Ñs3 3 3
7 6 71

than or equal to the variance of the estimator.  In Result 1 appendix C, we show that if  a1sÐ[ Ñ3
6

1s [ ß-estimators is based on a logistic model saturated in  such as model (17) ,  then3
0

T W œ ÐV  Ñ H [ Þ,0 " J,
3 3
0 0

39 3 39 31 1 I’ ¹ “ Mark (2003, Appendix F) provides code for

implementing -estimators using any logistic model (15).1s

 One feature of  -estimation is that it is the "natural" estimating procedure when the1s

requirements that sampling is independent and with known probabilities are relaxed.  In general,

the dependent sampling we consider is characterized as follows: partition the observed  into a[3

finite number of strata select a fixed number of cases and controls from each stratum.  If we letà

[3
0  be the saturated column space of  indicator variables generated by that partition, then we can

use any  -estimator with   (RRZ, lemma 6.2).  Such dependent sampling commonly1s [   [3
6

3
0
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occurs.  For example, in the Hp study we sampled a fixed number of cases and controls.  NCC

risk set sampling is by design dependent.  Mark (2003, Appendix E) provides -estimators for1s

both the NCC and CCH sampling schemes.

 We have so far assumed that sampling probabilities, , are entirely under investigator139

control.  Suppose, however,  some missingness occurred by chance. Under the assumption that

this missingness was also MAR (14), and that, rather than knowing ,  the investigator can<9

specify a  correct model such that     for some ,  then the estimator  has6913> œ [ Ð[ Ñs1 < < 1
39

‡ 6 ‡ 6
3 3

influence function given by given by (31) (RRZ, proposition 6.2)    For instance, in our study,Þ

due largely to mishaps in serum storage, approximately 10% of individuals had no serum on

which Hp antibodies could be measured. Given the nature of the events causing the missingness,

we believe that missingness was related to neither  or .  Hence, any -estimator with[ Z s3 3 1

[   [3
6 V

3  would be consistent.

Section 7:   Analyses of the Hp Data  Using the  , -estimator1 ?sÐ N Ñ

  Though Hp infection is a well established risk factor for gastric cancers arising outside

of the cardia of the stomach ( , theHelicobacter and Cancer Collaborative Group, 2001)

association with gastric cancers that arise in the cardia region (the proximal 2-3 centimeters of

the stomach) is less established.  Prior to our study, only a few small studies (case sizes ranging

from 4 to 12), examined the Hp-GCC  association. The consensus from these studies

( , allHelicobacter and Cancer Collaborative Group, 2001; Dawsey, Mark, Taylor, et al., 2002)

conducted on Western populations, was that Hp was "protective" for GCC, with 0.5.rr ¸

Various mechanistic hypothesis have been advanced  to account for the opposite association of

Hp on GNC and GCC (Blaser, 1999).

 In our study (Limburg et al. 2001) we sampled approximately 25% of GCC cases (100

cases) and 7% of controls (200 controls) that occurred in the cohort of 30,000 by 5.25 years of

follow-up. We found an Hp prevalence (Hp ) of approximately 65%, and a  of approximately rr

two for Hp  individuals.  The only other major independent risk factor for GCC in this

population was age: age greater than the cohort median age increased GCC risk by a factor of

3.5.
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  Table 1 contains estimates of covariate specific survivals at  5 25 years based on the7 œ Þ

CPH model (4) with  (Hp) and (age) indicator variables as defined in the introduction.  WeZ N

used the -estimator based on logistic model (17)   Throughout this paper we denote this1s Þ

estimator as .  At each level of age, the Hp  group had lower survivals than the Hp1 ?sÐ ß N Ñ  

group.  Within levels of Hp exposure, survival was higher in the younger group.  Using the

population age distribution for standardization (see A.4 for definitions and formulae), we

estimated that Hp  individuals had 1.8% more cases (95% CI, 0.02-2.15) of GCC than the Hp 

individuals in the 5.25 years of follow-up.    ÐMRWIVX XEFPI " LIVI Ñ

8.     Implications of  Efficiency for Study Design and Analysis
8.1 The general case

  T , is a function of unknown parameters.  RRZhe optimal  function, 1Ð I† Ñ H [’ ¹ “J,
3

proposition 2.4 established that can be replaced by a consistent estimator,  , without1 1s
/00 /00
, ,

changing the asymptotic distribution of the estimator.  That is, an estimator using   achieves1s
/00
,

the nonparametric efficiency, or semiparametric RC-efficiency, bound.  When  can be1/00,

consistently estimated from the data and model assumptions, we say the efficient estimator is

identified.  If not, then the variance of the efficient influence function represents an unknown

lower bound that no estimator is guaranteed to achieve.  It is immediately clear that unless  is\3

a deterministic function of , , and efficient estimationÖ ßE × H [ Á I H ßE? ?3 3 3 3
J, J,
3 3I’ ¹ “ ’ ¹ “

requires  in the conditioning event.  In the remainder of this section we approach the task of\3

conditioning on , by re-expressing  in terms of relative risks, survivals, and covariate\ 13
/00
,

distributions.  We discuss conditions under which each of these can be consistently estimated,

and examine the implications for study design and analysis.

 We re-express  as1/003ß,

1/003ß, =II H [ ßZ œ H [ ß @ T<Ð@l[ Ñ.@ Ð$#Ñ’ ¹ “ (J, J,
3 33 3 3 3

i

Š ‹
In the design stage, a crucial consideration is what, if any, auxiliary variables should be

measured.  that for  to contain the  "optimal set" of covariates, it is  From (32) it is clear A+?B
3

sufficient that for any larger set,  , A A3
+?B +?B

3
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T @ \ ß ß N Ñ œ T @ \ ß ß N Ñ Ð$$Ñ<Ð l <Ð l3 3 3 3 3 33
+?B +?B

3? A ? A, , 

That is, we should collect all auxiliary information which provides additional knowledge about

the distribution of the incompletely measured covariates  at any time on study   To furtherZ Þ3

examine the determinants of , we reparameterize in terms of the time dependentT<Ð@l[ Ñ3

exposure odds

O O Ð[ Ñ œ T<ÐZ œ @ l \ ßE Ñ T<ÐZ œ @ l \ ßE Ñ3ß@ @ 3 3 3 3 3 3 3 3 3
"

† †´ Ð$%Ñ† ? ?, ,  ‚
where , and .  Using Bayes' theorem and a non-@1is some chosen reference level in i i@ −†

informative censoring assumption we show (Appendix D) that

O œ << Ð\ @ ßE Ñ ‚ ‚ T<Ð@ lE Ñ T<Ð@ lE Ñ Ð$&Ñ3ß@ 3 3 3 3
"

† | † †?3 W Ð\ l@ E Ñ WÐ\ l@ E Ñ3 3 3 3
"† ‚ ‚

Here ,  are the relative risks and survival probabilities at <<Ð\ @ ßE Ñ3 3|  and † WÐ\ l@ E Ñ \3 3 3

conditional on , rather than  By (35), (33) is true if, for all times ÖZ ßE × ÖZ ß N ×Þ ?3 3 3 3

W Ð?lZ ß N ß Ñ œ WÐ?lZ ß N ß Ñ Ð$'Ñ3 3 3 33
+?B +?B

3A A  

and

    , , T<ÐZ lN Ñ œ T<ÐZ lN Ñ Ð$(Ñ3 3 3
+?B
3

+?B
3A A

3

Epidemiologists refer to (36) as containing  all A3
+?B independent predictors of  outcome; and (37)

as A3
+?B containing all .  independent predictors of  exposure

 The requirements for efficient analysis are conceptually and mathematically equivalent to

those in the design stage.  That is, to estimate , we need only include in the conditioning1/00,

event that subset of  that contains the independent predictors of outcome and exposure.A+?B

Though for any given  it is impossible to know with certainty whether (36) or (37) are true,A+?B
3

these are the exact considerations required to control confounding.  Consequently, in the analysis

stage epidemiologists generally try to choose  as the subset of such that (36) and (37) areN E3 3 

"approximately" true when  is removed from the conditioning event on the left hand side.  IfA3
+?B

successful in selecting  so that it contains all the ,  (35)N3 independent predictors of outcome

becomes

   |O œ << Ð\ @ ß N Ñ ‚ ‚ T<Ð@ lE Ñ T<Ð@ lE Ñ Ð$)Ñ3ß@ 3 3 3 3
"

†
† †?3 W Ð\ l@ ß N Ñ WÐ\ l@ ß N Ñ3 3 3 3

"† ‚ ‚
8.2  Efficiency when  contains all the independent risk factorsN  
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 In this section we assume that  contains all the independent predictors of outcome inN3

E3, so that  (38) is true.  , if we can estimate eachFrom (32) it is clear that we can estimate  1/003ß,

of the terms in For both the non and semiparametric failure time models, the second andO3ß@† .  

third terms can be estimated by  and where ~
WÐ\ l@ N Ñ T Ts s

3 3
† Ð@ lE Ð@ lE† †

3 3), )  is the empirical

average of   within levels of .  For the semiparametric model,  can be estimated byZ E <<Ð?l^ Ñ3

<< Ð?l^ Ñ œ~ ~ ~ ~  Here the  and   come from estimates based on any .3   /B: ^ Þ WÐ\ l@ N Ñ 1" "
X

3 3 3 ,
†

Hence the semiparametric RC-efficient estimators of  and  are identified.  In" A 7 " "9 9
X
9Ð ß Ñ /B: ^

contrast, the nonparametric model provides no obvious estimator of  If  were<<Ð?l^ Ñ 53 .   ‡

small, and the number of cases large, one could theoretically use kernel smooths to estimate

hazards, and hence 'srr .  We do not explore this possibility further.  Instead, in section 9 we

propose several  locally efficient estimators (LE-estimators).  LE-estimators approximate by1/00,

making assumptions about  We denote the resultant approximations  . <<Ð?l^ Ñ3 by  .  If the1s,
/00?

assumptions about the 's are correct, then  , and the LE-estimators are efficient.rr 1 1s
637:?/00 /00

, ,Ò

Regardless of the truth of the assumptions, the proposed -estimators are consistent.PI

9.  Simulations of STP,  ,  RC-efficient and Locally Efficient Estimators1s

 All simulations are based on the following covariate distribution: ,T<ÐN"Ñ œ !Þ&

T<ÐZ "Ñ œ !Þ'& T<ÐZ "lN"Ñ œ !Þ)&;  (here, and in what follows, we use the abbreviated

notation  for  ).   was specified by a CPH model with exponential baseline hazard.N" N œ " X3

The magnitudes for the baseline hazard, and the exponential hazard for the independent

censoring times, were chosen to produce approximately 1000 expected cases in a cohort of size

n=6600 by time .  This is the approximate number of cases that have occurred through the7

latest endpoint assessment, = 15 years.  For the semiparametric models we simulated under the7

two covariate CPH model (4) with  ( , and estimated" "" @ # 4œ 68 # << œ #Ñß œ 68 $ Ð<< œ $Ñ

WÐ l@ß 4Ñ7 .  For the nonparametric simulations the data were generated by a one-covariate CPH

model with   ( ; we estimated .  Stage 2 sampling was always binomial," 7" @œ 68 # << œ #Ñ WÐ l@Ñ

depending only on case status (16).  Fifteen per cent of controls and 25% of cases were sampled,

with a resultant control-to-case ratio of approximately 3:1.  Each of the simulation results

represents the average of 2000 realizations.  Since, as evident from the tables, all of the survival
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estimators (and estimators of data not shown) were unbiased and had confidence intervals"9ß

that covered near the stated rates, we focus the discussion on  .  RE isrelative efficiency (RE)

defined as the ratio (times 100) of the variance of a given estimator to the variance of the STP

estimator.  The smaller the RE,  the greater the efficiency.

 Table 2 contrasts the STP, RC-efficient, and  semiparametric estimators of1 ?sÐ ß N Ñ

WÐ l@!4!Ñ WÐ l@"4"ÑÞ Ð ß N Ñs7 7 1 ? and  Both the RC-efficient and the  estimators are substantially

more efficient than the STP estimator: approximately 45% more efficient in estimating

WÐ l@!4!Ñ WÐ l@"4"Ñ7 7, and 70% more efficient in estimating .  The greater magnitude of the gains

for  reflects the fact that, in general, efficiency differences are due to the differentialWÐ l@"4"Ñ7

extraction of information from cases with unmeasured .  In this simulation approximately 8%Z3

of cases had V0J0,  whereas 71% had V1J1.  The differences in efficiency as a function of

covariate values disappear when the simulations are set to produce equal number of cases in each

covariate level (data not shown).  Though for both covariate levels the RC-efficient are more

efficient than the -estimators, these differences are small. Since for the saturated1 ?sÐ ß N Ñ

1 ? ?sÐ ß N Ñ 1 H N ß-estimator =  (Result 1, Appendix C), the slight advantage of the RC-, 3 3
J,
3I’ ¹ “

efficient reflects the fact that little is gained by adding the actual observed time, , to the\3

conditioning eventsÞ (INSERT TABLE 2 HERE )

 Table 3 contains results for nonparametric estimators of  when  is an auxiliaryWÐ l@Ñ N7 3

covariate rather than a risk factor.  For example,  might be a surrogate for , such as evidenceN Z3 3

of gastric inflammation found on a biopsies obtained at the beginning of the study.  These

simulations reveal two important features of estimation.  First, they demonstrate the potential for

gaining efficiency by utilizing auxiliary information: th -estimator (logistic model 17)e 1 ?sÐ ß N Ñ

is more efficient than the -estimator (logistic model 16).  In simulations (not shown) where1 ?sÐ Ñ

Z N Ð ß N Ñ Ð Ñs s and  are independent,  the efficiency of the -estimator is identical to that of -1 ? 1 ?

estimator.  Second, the contrast in the performance of  the two different locally efficient

estimating procedures illustrates some noteworthy properties of LE-estimators.  Each of the

corresponding named  ( ) and  ( )  estimators use identicalsimple SLE insured ILE local efficient

estimates,  , of  .  However SLE-estimates are produced by setting   in (20),1 1 1 œ 1s s
?
1 11
/00 /00

"
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whereas ILE-estimates are -estimates based on prediction model (30) with .  By1s 1 œ 1s"
/00
1

construction, ILE-estimators must be at least as efficient as -estimators, even when 1 ?sÐ ß N Ñ

1 Ñs"
/00? is based on a misspecified .  SLE's do not share this property.  For example, the<<Ð\ l@"3

1s"
/00? of the  SLE and ILE correct-estimators  is based on a correctly specified models for

<<Ð\ l@"3 Ñ Z.  Specifically, we assumed exponential hazards within each  level; estimated the

hazards by dividing the number of observed cases by total person-time; and estimated <<Ð\ l@"3 Ñ

as a ratio of the hazards.  Both the SLE and ILE correct estimators attain the nonparametric

efficiency bound.  In contrast the SLE and ILE   and  estimators use misspecifiedprior null

<<Ð\ l@" <<Ð\ l@"3 3Ñ Ñ œ's.  The   estimators set  0.5, the pooled estimate of  from the priorprior rr

studies. The ;  these would be the efficient estimator under thenull   estimators set <<Ð\ l@"3 Ñ œ "

null hypothesis.  Table 3 shows that for estimators of  the SLE-prior estimator is lessWÐ l@!Ñ7

efficient than the -estimator.  In simulations with  and  independent (data not1 ?sÐ ß N Ñ Z N

shown), the SLE-prior has a variance  9% greater than even the STP-estimator.  Thus the RE's of

the SLE estimators are not bounded above by 1. In contrast, in the Table 3 simulations the ILE

prior is more efficient that the -estimator.  Under independence the efficiencies are1 ?sÐ ß N Ñ

nearly identical.  Note that all locally efficient estimators, misspecified or not, are unbiased and

have confidence intervals that cover at the stated rate. (INSERT TABLE 3 HERE)

10.    Discussion

 Two-stage studies are commonly used in epidemiology as a resource-effective means of

estimating the association of disease with exposures whose measurements consume a substrate

of limited quantity.  When estimating survival, the procedures proposed by the case-cohort and

nested case-control designs are biased if cases are missing exposure measurements.  By chance

alone it is rarely possible to make measurements on all cases of a cohort.  Applying results of

RRZ, we derived a class of nonparametric estimators, and a class of semiparametric estimators,

that provide unbiased estimates of cumulative hazards and survivals when cases are missing

covariate data.  We used a semiparametric estimator to analyze data from a study we conducted

on the association of   infection and gastric cardia cancer in which only twenty-fiveH. pylori
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percent of available cases were sampled.  We found significant differences in age-standardized

survivals between subjects with and without Hp infection.

 Differences in efficiency between estimators results from differences in their utilization

of information from subjects with no stage-two measurements. The standard NCC and CCH

designs exclude those individuals from estimation.  More efficient estimators use the data

observed in stage-one to provide information on the exposures not observed in stage-two.  WZ3 e

expressed the optimal estimators in terms of the familiar quantities of relative risks, survivals,

and exposure prevalences.  Based on those expressions we described various estimating

strategies that allow investigators to incorporate knowledge, estimates, or hypothesis about those

quantities in a manner which can increase efficiency without sacrificing consistency.  The

insured local estimating procedures we proposed provide the additional guarantee that even if the

incorporated knowledge is incorrect, efficiency will not decrease.  We further showed that the

subject matter considerations required to control confounding in observational studies are

identical to those required when considering efficiency: investigators should measure all

covariates thought to  be independent predictors of either exposure or disease. Through 

simulations we demonstrated that the variation in efficiency between estimators within a class is

of practical consequence. -estimation, which We emphasized a general approach to estimation, 1s

allows investigators a flexible approach to specifying estimators with desirable efficiency

properties.  We have written and documented computer code in S-plus and R for these -1s

estimators (Mark, 2003, Appendix F) . These allow estimation of survivals and relative risks in a

completely general covariate space.
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Appendix A.

 In this appendix, we provide consistent estimators of the asymptotic variances for the

two-stage estimators of cumulative hazards, relative risks, and survivals.  When we can do so

without confusion, and to indicate that any consistent estimator of a parameter will suffice, we

d .  For instance, we write  for , .  ~ ~ ~rop the arguments 1 Ð Ñ Ð 1 Ñ, "A 7 A 7 We further define  =.Q Ð?Ñ3

.R Ð?Ñ  ] Ð?Ñ .Q Ð?ß Ñ œ .R Ð?Ñ  ] Ð?Ñ = Ð?ß Ñ3 3 3 3 3
4 ;  ;    ~ ~~ ~ ~ ~. Ð?Ñ . Ð ?ß Ñ/B: ^ † 8A " A " "  = 9 3

"

W Ð?ß † Ñ / Ð?ß Ñ= Ð?ß Ñ 8
~ ; ;    = ~ ~ ~ ~ ~4 " !

9 3
" " "

3ß9Ð?ß Ñ œ = ^  IÐ\ ß Ñ" " " 1 ? "3 !
3œ"

8
3 3V3 Š ‹Š

^  IÐ\ ß Ñ3 3
~ ;" ‹X

A.1. Estimating  (26), and  (31) H Ð1 Ñ H Ð Ð[ ÑÑs, , 6
3 3, 1

 Estimators  of are formed by the obvious substitutions for ~
H Ð1 Ñ H Ð1 Ñ †3

,
, ,3

, = Ð?ß Ñ4 ,

.Q Ð?ß Ñß3 † /and ~ .  The weights  can be replaced by any consistentÐ?ß Ñ" 1 in 21, 23, 25 3ß9

estimate,  .  For  -estimators,  and  are formed by estimating  (28)~ ~
1 1 1 1s s s sH Ð Ð[ Ñ Ñ H Ð Ð[ Ñ Ñ T3 3

6 6 ,61 2

by the vector of regression parameters from an ordinary least squares regression of  on~
H Ð Ñ

,
3 391

the scores .  Letting ( ) ,  we express   as~
W 1 œ T [ H Ð Ð[ ÑÑs s3

6
3ß 3ß9

#6 6 6
3 32

31 1 1

H Ð Ð[ ÑÑ ´ H Ð 1 ß 1 œ ! Ñ  IÒH Ð 1 ß 1 œ !ÑW IÒW W Ws s s3 l l
3 3 $ 3 3 3 3

6 $ $ 6 6
# # $

X X "
1 1 1 ( ) ( )  ‡ ‡ ‘ ‘

and form the estimator,  , using the ordinary least squares regression as above.~
H Ð Ð[ ÑÑs

3
3

61

A.2 Estimating the asymptotic variance of  and  ,A 7 A " "
~ ~
Ð Ñß Ö Ð ß Ñ ×9 7

X X

  Let  and the variances of  , ,  ~ ~ ~ ~  be  and  respectively. LetZ Z Ð Ñ1 +
A 7 Ö Ñ ×A " "9Ð7

X X

H œ ÖßH H × H
~ ~ ~ ~ ~, .  onsistent estimates of the asymptotic variance are + $ # "

3 3 3 3

X
X " C =  Z 8" !

H H H
~ ~ ~ ~and ." + +

3 3 3

X
" X

 Z œ 8+ !
A.3 Estimating the asymptotic variance of  WÐ l@ß 4Ñ

~ .7

 Let and WÐ Ñ W Ð Ñ 5 ‚ "
p p~ ~

,  be the vector of  nonparametric and semiparametric  survival7 7 " ‡

estimators, with row entry  |  and , .  Let  ~ ~
2 WÐ D œ 2Ñ WÐ ß l D œ 2Ñ 2 − Z7 7 " m Zs1 and be the=#

corresponding  and  5 ‚ 5 WÐ Ñ W Ð Ñ K 5 ‚ 5
p p

‡ ‡ ‡ ‡ variance matrices for , .  Define  as the
~ ~
7 7 "
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diagonal matrix with   in the 'th row 'th column.  Then ~ ~ ~
WÐ lD œ 2Ñ 2 2 Z œ K7 =" Z K" " is a

consistent estimate of .   Each  corresponds to  a unique 1  covariate vector, .Z 2 − : ‚ D=" 2m

Let  be the vector, .  Let ~ ~ ~
P " ‚ Ð:  #Ñ P œ WÐ ß l2Ñ /B:Ð D Ñ ‚ Ö "ß ‚ D × P2 2 2

X X
27 " " A 7 "9Ð ß Ñ

be the  matrix with  row .  Then  ~ ~
5 ‚ Ð:  "Ñ 2 >2 P Z œ P‡ w X

2 =2 Z P+  is a consistent estimator of

Z Þ=#

A .4  Standardized survival and standardized risk differences.

 Consistent with common usage we define , , to be thestandardized survival W Ð l@Ñ= 7

weighted sum of covariate specific survivals, with known weights, AÐ4 Ñ‡ , which sum to 1.  That

is, .  ,  be the number of levels of  and  respectively.W Ð l@Ñ œ WÐ l@ß 4 Ñ AÐ4 Ñ 4 Z Ns 7 7!
]

‡ ‡ ‡ ‡Let  @

Arrange   in  blocks of length , in order of  increasing index.  Let  be the
~

 WÐ ß † l@ß 4Ñ @ 4 [
p
7 ‡ ‡ X

4

" ‚ 4 A M @ ‚ @ G œ [ Œ M Œ‡ ‡ ‡ X
4 @ A @4 matrix of weights ;  the  identity matrix; and   where ‡ ‡

denotes the Kronecker product .  Then    with variance estimated by, for~ ~
W Ð l@Ñ œ G WÐ † l@ß 4Ñ
p p=

A7 7

instance,  .   Estimates of standardized risk differences , ,  are simple contrasts~ ~
G Z G V.Ð ÑA =" A

X 7  

of the .~
W Ð l@Ñ

=
7

 Appendix  B

 In this appendix we prove that the variance of (24) is minimized when 1 œ !ß 1 œ IÒ2 $‡

H l[ Ó G Ð1 Ñ œ V H ÐV  Ñ 1 5 à 5 œ /Ð?ß Ñ . Ð?ÑÞ3
J$ " J " "

3 3" # 3 3 39 3 " " 9 939 393 !.  Let    +1 1 1 " A3
23 ' 7

Then (25) is  =  H Ð1 ß 1 Ñ G Ð1 Ñ  ÐV  Ñ1 Þ$ "
3 # $ " 3 39 3$39‡ ‡2 1 1 For any fixed , proposition 2.3 RRZ12
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3 # $ #3ß
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Taking the expectations in (B.1) conditional on , the only  term containing  is[ 13 2

I Ð"  Ñ Ð 1 5 Ñ’ “1 1" " #
39 39 3ß "3 2

which is minimized by 1 œ !Þ3ß#

Appendix C



-21-

 In this appendix we show that the variance of (27) is minimized iff   H Ð[ Ñ ; W œ3 3
, 6 , 6 "

39
 1

ÐV  ÑI H l[ Þ W ;3 39 3
J, 6 ,
3 31 ’ “  For any given set of scores, ,  the variance is minimized when 

œ T W,6 6
3 (28).  Since the variance is non-increasing in the dimension of ,

T W œ ÐV  Ñ1 ß,6 6 "
3 39 3 39

/00
,1 1   iff for all ,[  [3 3

7 6

I H Ð Ñ  T W W œ ! ÐGÞ"Ñ” •Š ‹, 6 7l6
3 13ß9

X

 . ,6

 Here  are the linearly independent matrix of scores from the residual of the projection of W W3
7l6 7

3

on .   Taking the expectation of (C.1) conditional on , and using MAR restriction (14)  thisW L ß3
6

3

becomes   ,  which is true I [ Ð"  Ñ I H  T [ œ !’ “ ¹” •3
7l6

39 39 3
J,
31 1 ,6 6

3[ iff

T ÐV  ÑI H l[,6 6
3W œ 1 139

" J,
3 39 33’ “.     

 Result : " Taking each of the expectations in  conditional on , we obtain T L T œ,6 ,6
3 I

’ “ ’ “Ð"  ÑH ‚ Ð[ Ñ ‚ Ð"  Ñ[ [1 1 139 39 39
J, 6 X 6 6
3 3 3 3

"

I [
X .   Let  have discrete covariate0

space of dimension , with model (15) parameterized so that the design matrix is the 0 0‡ ‡ ‡‚ 0

identity  matrix.  Then, the matrix of scores are orthonormal, and  T W œ ÐV  Ñ,0 "
3
0

39 3 391 1

I’ ¹ “H [J, 0
3 .

 To see that for (30)  Result 2: T ÐV  Ñ 1,0
3W œf 1 139

"
3 39

/00
, , note that (30) is correctly

specified with ;  by the general form of the  in Result 1, the projection of< <" #
,6œ "ß œ ! T

H Ð Ñ ÐV  Ñ [ ÐV  ÑI H [, " " J,
3 33ß9 3 39 3 39 339 393,

/001 1 1 1 1 onto  is  .  Since the span of the scores’ ¹ “
from model (30) is greater than the span of  ,  (29) is true for the scores from1 139

"
3 39 3

/00ÐV  Ñ[

model (30)Þ

Appendix D

 In this appendix we derive a general expression for O Ð[ Ñ@ 3† , and the specific expression

given in (39) We define.  

- ?‡
7 3 3 3 3 3ß

637
2p!Ð= @ ßE Ñ œ T<Ð = Ÿ \  =  2 œ 7 \   =ß @ ßE Ñ 2 ÐHÞ"Ñ| ,  |    ; † † ‚

  | |    - -‡ ‡
\ 73

7œ!

"

Ð= @ ßE Ñ œ Ð= @ ßEÑ ÐHÞ#Ñ† †"
   | , |  << Ð= l @ ß E Ñ œ Ð= @ E Ñ Ð= @ ßE ß Ñ ÐHÞ$Ñ

7

† †
3 7 3 7 3- -‚ 1  

where  .  We further define a  assumption7 − Ö!ß "× " non-informative censoring"
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T<ÐG   =lX   =ß Z ßE Ñ œ T<ÐG   =lX   =ßE Ñ ÐHÞ%Ñ3 3 3 3 3 33

The hazards in (D.1) are referred to as the crude hazards of ,  ( ), and , ( ).G 7 œ ! X 7 œ "3 3

(D.2) is the hazard for the random variable .  Under the conditional independence assumption,\3

the crude hazards equal the net hazards (e.g. Andersen et al., 1991).  Non-informative censoring

assumption (D.4) is similar in subject matter content to the usual non-informative censoring

assumption, but does not imply that assumption: the latter allows for dependency of both andG3

X Z ß3 3 on  but requires that, in terms of factorability of the likelihood, such dependency be

distinct ( Andersen et al., 1991).

  ,By Bayes' rule

T<Ð l\ ß T<Ð\ ß l@ ß E Ñ œ @ ß E Ñ ‚ T<Ð@ l E Ñ T<Ð\ ß l E Ñ† † †
3 3? ? ?3 3 3 3 3 3 3 3    .  Writing‚

T<Ð\ œ B ß l @ß E3 3 33 ? ) as  , , we obtain-?3 3Š ‹B l@ßE \   B ‚ T<Ð\   B l@ßE Ñ3 3 3 3 3 3

O œ << ÐB @ ßE ß Ñ ‚ T<Ð\   B l@ ßE ÑÎT<Ð\   B l@ ßE Ñ ‚ ÐHÞ&Ñ3ß@ 3 3 3 3 3 3 3 3
"

† ?3
| † †

    T<Ð@ l E ÑÎT<Ð@ l E Ñ†
3 3

1

Applying  (D.4) the right hand side of  (D.5) givesß

<< ÐB @ ßE Ñ ‚ T<ÐX   B l@ ßE Ñ T<ÐX   B l@ ßE Ñ ‚ ÐHÞ'Ñ" 3 3 3 3 3 3 3 3
"| † †?3 

       T<Ð@ l E Ñ T<Ð@ l E Ñ†
3 3 1

Using LE estimators as in section 9,  one could postulate models for the distribution of  X3

conditional on  and estimate (D.6); with additional assumptions about the conditionalÖZ ßE ×3 3

distribution of , (D.5) can be similarly estimated.  When contains all the independent riskG N3

factors in , ( )  becomes (39).E HÞ'3

 Though (D.5-D.6, 38) are true regardless of the support of and , consistency of theZ E3 3

estimators given in section 9 depends on the discreteness of .  When the support is notE3

discrete, can be approximated by forming discretized random variables , and using theO E3ß@
=
3 

empirical distribution of  instead of .T<ÐZ lE Ñ T<ÐZ lE Ñ3 3
=
3 3



 
Table 1.   

Estimating Survival Conditional on Hp and Age at 5.25 years 
 in the Linxian Cohort 

  

  Survival  (95% CI) 
  H. Pylori- (V0)  H. Pylori+ (V1) 

     
Young (J0)  99.2 (98.9, 99.5)  98.8 (98.4, 99.0) 

Old (J1)  97.3 (96.1, 98.1)  95.5 (94.4, 96.3) 
 

The estimates are based on the CPH model with relative risk exp(β1V+ β2 J).  
The ˆ( , )Jπ ∆ -estimator (17) was used for estimating oβ and ( ),o oτ βΛ . 

 
 
 
 
 
 
Table 2. 

The STP, RC-efficient, and ˆ( , )Jπ ∆  Semiparametric Estimators of τ( | , )S v j  
 

  0 0 90( | , ) %S v jτ =   1 1 73 5( | , ) . %S v jτ =  
Estimator  Mean 

Survival 
V=0, J=0 

95% CI 
Coverage 

Relative  
Efficiency 

 Mean 
Survival 
V=1, J=1 

95% CI 
Coverage 

Relative 
Efficiency 

STP  95.0 94.7 100  73.5 95.5 100 
RC-efficient  95.0 95.0 55  73.6 95.7 27 

ˆ( , )Jπ ∆   95.0 95.6 57  73.5 95.2 31 
 
Note: Relative efficiency equals 100 times the ratio of the variance of the estimator to the 
variance of the STP estimator.  

  



 
Table 3.  

The STP, ˆ( , )Jπ ∆ , SLE, and ILE non-parametric estimators of ( | )S vτ  in the 
presence of an auxiliary covariate 

 

  0 90( | ) %S vτ =   1 81( | ) %S vτ =  
Estimator  Mean 

Survival 
V=0 

95% CI 
Coverage

Relative 
Efficiency

 Mean 
Survival 

V=1 

95% CI 
Coverage

Relative 
Efficiency

STP  90.0 94.1 100  81.0 94.7 100 
ˆ( )π ∆   90.0 94.5 83  81.0 95.4 50 

ˆ( , )Jπ ∆   90.0 93.8 74  81.0 94.8 45 
SLE correct  90.0 94.4 71  81.0 95.7 40 
ILE correct  90.0 94.4 71  81.0 95.7 40 
SLE prior  90.0 94.9 85  81.0 95.4 43 
ILE prior  90.0 94.2 71  81.0 95.5 40 
SLE null  90.0 94.4 74  81.0 95.7 40 
ILE null  90.0 94.4 71  81.0 95.8 40 

 
Note: Relative efficiency equals 100 times the ratio of the variance of the estimator to the 
variance of the STP estimator 
 
 


